Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2022

High and mid latitude and near subsolar point ionospheric and thermospheric responses to the solar flares and geomagnetic storms during low solar activity periods of 2017 and 2020

The paper observes the super-imposed effects of intense and moderate solar flares and Coronal Mass Ejection (CME) and High Speed Solar Wind (HSSW) driven geomagnetic storm events on the ionosphere and thermosphere at mid and high latitudes during low solar activity periods. The observations are conducted over a fixed longitude (∼117°W geographic) during May 27–31, 2017 (duration with intense geomagnetic storm without any significant solar flare event), September 3–6, 2017 (duration with solar flare events), September 7–16, 2017 (duration with intense to moderate solar flares as well as geomagnetic storms) and November 28–30, 2020 (duration with a moderate solar flare event with no geomagnetic storm in association). It is found that the effects were the highest during May 27–31, 2017 among all of these events. From the observations of super-imposed effects of the geophysical events, it was found that the effects of an X-class solar flare on September 10–12, 2017 on mid-latitude ionization were suppressed by the Disturbed Dynamo Electric Field (DDEF) from high latitudes during the recovery phase of an intense CME driven geomagnetic storm. The weak effects were also explained by the position of origination of the flare at the Sun. Correlations were observed between the variations in O/N2, neutral wind velocities and the mid and high latitude Total Electron Content (TEC) during these periods. Possible explanation is given for those few cases (for example, September 14, 2017) when the variations in O/N2 mismatched with the local TEC especially in the mid-latitudes. The effects of the solar flare event on November 28–30, 2020 which were short-lived have also been also observed at locations near the subsolar point from low latitudes in the southern hemisphere.

Sur, Dibyendu; Ray, Sarbani; Paul, Ashik;

Published by: Advances in Space Research      Published on: jul

YEAR: 2022     DOI: 10.1016/j.asr.2022.04.024

CME driven storms; HSSW driven storms; Joule heating; O/N ratio; Plasmaspheric contributions; Solar flare

2021

Impact of CME and HSSW driven geomagnetic storms on thermosphere and ionosphere as observed from mid-latitudes

The present paper reports magnetospheric-thermospheric-ionospheric interactions, observed during geomagnetically disturbed periods in 2015–2016 from mid-latitude stations located in the US-Pacific longitudes (\textasciitilde120°W geographic). These interactions have been analyzed for a series of Coronal Mass Ejection (CME) and High Speed Solar Wind (HSSW) driven geomagnetic storms during the moderate solar activity periods. The geomagnetically disturbed periods under consideration in this paper have an interesting feature of the occurrences of one or more HSSW events following an intense CME driven intense geomagnetic storm. Correlations were observed between the solar and geomagnetic parameters, hemispherically integrated Joule heating, changes in O/N2 ratio, corresponding changes in neutral wind velocities and mid-latitude Vertical Total Electron Content (VTEC) in most of the cases. Prolonged effects of neutral wind driven equatorward plasma transport process were noticed during the period of the summer solstice (June 23–26, 2015) which was correlated with the hemispherically integrated Joule heating and ionospheric conductivities. The effects of storm onset were observed during March 17–18, 2015. The influences of the ‘super-fountain effect’ in terms of Prompt Penetration Electric Field (PPEF) were seen during the main phases of the geomagnetic storms from these mid-latitude stations. This is correlated with the strength of Equatorial Electrojet (EEJ).

Sur, Dibyendu; Ray, Sarbani; Paul, Ashik;

Published by: Advances in Space Research      Published on: aug

YEAR: 2021     DOI: 10.1016/j.asr.2021.03.027

CME and HSSW storms; Joule heating; Meridional and zonal wind; O/N ratio; Plasma transport; VTEC

Auroral Energy Flux and Joule Heating Derived From Global Maps of Field-Aligned Currents

We calculate auroral energy flux and Joule heating in the high-latitude ionosphere for 27 geomagnetically active days using two-dimensional maps of field-aligned currents determined by the Active Magnetosphere and Planetary Response Experiment. The energy input to the ionosphere due to Joule heating increases more rapidly with geomagnetic activity than that due to precipitating particles. The energy flux varies more smoothly with time than Joule heating, which is impulsive in nature on time scales from minutes to tens of minutes. These impulsive events correlate well with recoveries in the Sym-H index, with the maximum correlation when compared to Sym-H recoveries 70 min later. Because of prior studies that have associated transient recoveries of Sym-H with substorm expansions, the delay found here suggests that dissipation of energy in the ionosphere occurs during the substorm growth phase prior to the release of magnetic energy caused by diversion of tail currents.

Robinson, R.; Zanetti, L.;

Published by: Geophysical Research Letters      Published on:

YEAR: 2021     DOI: 10.1029/2020GL091527

Geomagnetic storms; Auroral energy flux; auroral energy input; auroral substorms; Joule heating; ring current

2020

Impacts of Binning Methods on High-Latitude Electrodynamic Forcing: Static Versus Boundary-Oriented Binning Methods

An outstanding issue in the general circulation model simulations for Earth\textquoterights upper atmosphere is the inaccurate estimation of Joule heating, which could be associated with the inaccuracy of empirical models for high-latitude electrodynamic forcing. The binning methods used to develop those empirical models may contribute to the inaccuracy. Traditionally, data are binned through a static binning approach by using fixed geomagnetic coordinates, in which the dynamic nature of the forcing is not considered and therefore the forcing patterns may be significantly smeared. To avoid the smoothing issue, data can be binned according to some physically important boundaries in the high-latitude forcing, that is, through a boundary-oriented binning approach. In this study, we have investigated the sensitivity of high-latitude forcing patterns to the binning methods by applying both static and boundary-oriented binning approaches to the electron precipitation and electric potential data from the Defense Meteorological Satellite Program satellites. For this initial study, we have focused on the moderately strong and dominantly southward interplanetary magnetic field conditions. As compared with the static binning results, the boundary-oriented binning approach can provide a more confined and intense electron precipitation pattern. In addition, the magnitudes of the electric potential and electric field in the boundary-oriented binning results increase near the convection reversal boundary, leading to a ~11\% enhancement of the cross polar cap potential. The forcing patterns obtained from both binning approaches are used to drive the Global Ionosphere and Thermosphere Model to assess the impacts on Joule heating by using different binning patterns. It is found that the hemispheric-integrated Joule heating in the simulation driven by the boundary-oriented binning patterns is 18\% higher than that driven by the static binning patterns.

Zhu, Qingyu; Deng, Yue; Richmond, Arthur; Maute, Astrid; Chen, Yun-Ju; Hairston, Marc; Kilcommons, Liam; Knipp, Delores; Redmon, Robert; Mitchell, Elizabeth;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2020

YEAR: 2020     DOI: 10.1029/2019JA027270

Electric field; high latitude; Joule heating; particle precipitation

2014

Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations

Altitudinal distribution of Joule heating is very important to the thermosphere and ionosphere, which is roughly proportional to the Pedersen conductance at high latitudes. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites observations from 2008 to 2011, the height-integrated Pedersen conductivities in both E (100\textendash150\ km) and F (150\textendash600\ km) regions and their ratio γPγP (PE/PF∑PE/∑PF) have been calculated. The result shows that the maximum ratio in the northern summer hemisphere is ~5.5, which is smaller than that from the Thermosphere\textendashIonosphere\textendashElectrodynamics General Circulation Model (TIE-GCM v1.94) simulation (~9). This indicates that the energy inputs into the F region may be underestimated in the model. The seasonal variations of the ratio have been investigated for both hemispheres, and an interhemispheric asymmetry has been identified. The variational trend of the ratio is similar in both hemispheres, which reaches minimum at local summer and maximum at local winter. However, the difference of the ratio from local summer to local winter in the southern hemisphere is larger than that in the northern hemisphere.

Sheng, Cheng; Deng, Yue; Yue, Xinan; Huang, Yanshi;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1016/j.jastp.2013.12.013

COSMIC; Interhemispheric asymmetry; Joule heating; Pedersen conductivity

Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity

Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research\textendashthermosphere-ionosphere-mesosphere electrodynamics\textendashgeneral circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100\textendash120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to ~105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere temperature, and the contribution from solar EUV variations is minor. Furthermore, we also found that consecutive coronal mass ejection events could cause long-duration enhancements in the lower thermospheric temperature that strengthen the 9 day and 13.5 day signals, and this kind of phenomenon mostly occurred between 2002 and 2005 during the declining phase of solar cycle 23.

Jiang, Guoying; Wang, Wenbin; Xu, JiYao; Yue, Jia; Burns, Alan; Lei, Jiuhou; Mlynczak, Martin; Rusell, James;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2013JA019406

13.5 day variation; 9 day variation; Joule heating; lower thermospheric temperature; recurrent geomagnetic activity; solar EUV radiation

Variations of the neutral temperature and sodium density between 80 and 107 km above Troms\o during the winter of 2010-2011 by a new solid-state sodium lidar

A new solid-state sodium lidar installed at Ramfjordmoen, Troms\o (69.6\textdegreeN, 19.2\textdegreeE), started observations of neutral temperature together with sodium density in the mesosphere-lower thermosphere (MLT) region on 1 October 2010. The new lidar provided temperature data with a time resolution of 10 min and with good quality between \~80 and \~105 km from October 2010 to March 2011. This paper aims at introducing the new lidar with its observational results obtained over the first 6 months of observations. We succeeded in obtaining neutral temperature and sodium density data of \~255.5 h in total. In order to evaluate our observations, we compared (1) the sodium density with that published in the literature, (2) average temperature and column sodium density data with those obtained with Arctic Lidar Observatory for Middle Atmosphere Research Weber sodium lidar, and (3) the neutral temperature data with those obtained by Sounding of the Atmosphere with Broadband Emission Radiometry/Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. For the night of 5 October 2010, we succeeded in conducting simultaneous observations of the new lidar and the European Incoherent Scatter UHF radar with the tristatic Common Program 1 (CP-1) mode. Comparisons of neutral and ion temperatures showed a good agreement at 104 km between 0050 and 0230 UT on 6 October 2010 when the electric field strength was smaller, while significant deviations (up to \~25 K) are found at 107 km. We evaluated contributions of Joule heating and electron-ion heat exchange, but derived values seem to be underestimated.

Nozawa, S.; Kawahara, T.; Saito, N.; Hall, C.; Tsuda, T.; Kawabata, T.; Wada, S.; Brekke, A.; Takahashi, T.; Fujiwara, H.; Ogawa, Y.; Fujii, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013JA019520

Joule heating; neutral temperature; polar MLT; sodium lidar

2012

Importance of capturing heliospheric variability for studies of thermospheric vertical winds

Using the Global Ionosphere Thermosphere Model with observed real-time heliospheric input data, the magnitude and variability of thermospheric neutral vertical winds are investigated. In order to determine the role of variability in the Interplanetary Magnetic Field (IMF) and solar wind density on the neutral wind variability, the heliospheric input data are smoothed. The effects of smoothing the IMF and solar wind and density on the vertical winds are simulated for the cases of no smoothing, 5-minute, and 12-minute smoothing. Various vertical wind acceleration terms, such as the nonhydrostatic acceleration, are quantified. Polar stereographic projections of the variabilities of vertical wind and ion flows are compared to highlight existing correlations. Overall, the smoother, that is, the less variable the IMF and solar wind parameters are, the weaker are the magnitude and the variability of the thermospheric vertical winds. Weaker IMF variability leads to smaller variability in ion flows, which in turn negatively impacts the variability and the magnitude of Joule heating. Small-scale temporal variation of the vertical wind acceleration, and thus the variability of the vertical wind, is dominated by the nonhydrostatic term that is controlled primarily by the temporal variation of the Joule heating, which in turn is related to ion flow variations that are shaped by the IMF in the high-latitude thermosphere. Wavelet analysis of the vertical wind data shows that gravity waves of \~5 and \~10-minute periods are more prominent when the model is run with high-resolution real-time IMF and solar wind data. Better capturing of the temporal variation of the IMF and solar wind parameters is crucial for modeling the variability and magnitude of thermospheric vertical winds.

Erdal, Yi\u; Ridley, Aaron; Moldwin, Mark;

Published by: Journal of Geophysical Research      Published on: 07/2012

YEAR: 2012     DOI: 10.1029/2012JA017596

gravity waves; interplanetary magnetic field; Joule heating; magnetosphere-ionosphere-thermosphere coupling; nonhydrostatic general circulation model; vertical wind variability



  1